
1412 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Don’t Care Computation and De Morgan
Transformation for Threshold Logic

Network Optimization
Chia-Chun Lin , Ciao-Syun Lin , You-Hsuen Tsai ,

Yung-Chih Chen , Member, IEEE, and Chun-Yao Wang, Member, IEEE

Abstract—Threshold logic has been attracting great atten-
tion from researchers due to the rapid development in
nanotechnology-based devices. In the state-of-the-art approach
to the threshold logic network (TLN) synthesis using don’t cares,
we observed that not all the computed don’t cares contribute to
the cost minimization of threshold logic gate (TLG). Therefore, in
this work, we focus on computing the don’t cares that effectively
provide the opportunities for cost minimization. Furthermore,
De Morgan’s law for TLGs is applied such that global TLN
optimization considering the cost and the number of inverters
can be achieved. The experimental results show that the proposed
approach is capable of obtaining efficiently a smaller cost and
fewer inverters for a set of TLN benchmarks.

Index Terms—De Morgan’s law, don’t cares, logic implication,
threshold logic, threshold logic gate (TLG) optimization.

I. INTRODUCTION

LOGIC synthesis plays a crucial role in the VLSI design
flow, and it contains optimization engines to improve the

quality of design at logic level. Different from Boolean logic
networks, the threshold logic network (TLN) is an alternative
representation that is used to express a Boolean function. Due
to the higher expression ability of a single threshold logic gate
(TLG), a TLN usually has a shorter depth and a smaller num-
ber of TLGs compared to the conventional Boolean networks.
In the past decade, threshold logic has been attracting great
attention from the researchers due to the rapid development in
nanotechnology-based devices [2], [28]. Thus, logic synthesis
for TLNs has become an important research direction recently.

An integer linear programming (ILP)-based algorithm for
the TLN synthesis was first proposed in 2005 [28]. This algo-
rithm performed the binate node splitting operation to obtain

Manuscript received February 17, 2021; revised April 16, 2021; accepted
May 30, 2021. Date of publication June 8, 2021; date of current ver-
sion April 21, 2022. This work was supported in part by the Ministry
of Science and Technology (MOST) of Taiwan under Grant 108-2218-E-
007-061, Grant 109-2221-E-007-082-MY2, Grant 109-2221-E-155-047-MY2,
and Grant 109-2224-E-007-005. This article was recommended by Associate
Editor R. Drechsler. (Corresponding author: Chia-Chun Lin.)

Chia-Chun Lin and Chun-Yao Wang are with the Department of Computer
Science, National Tsing Hua University, Hsinchu 30013, Taiwan (e-mail:
chiachunlin@gapp.nthu.edu.tw).

Ciao-Syun Lin and You-Hsuen Tsai are with the Department of Computer
Science, National Tsing Hua University, Hsinchu 30013, Taiwan.

Yung-Chih Chen is with the Department of Computer Science and
Engineering, Yuan Ze University, Taoyuan 32003, Taiwan.

Digital Object Identifier 10.1109/TCAD.2021.3087584

unate function nodes. Then, an inequality system was derived
from a unate function node. Once the inequality system can
be solved by an ILP solver, the function node can be repre-
sented with a TLG. Otherwise, this node has to perform the
unate node splitting operation until it can be represented with a
TLG. That work presented a general approach to generate the
inequality system for synthesizing a TLN with the assistance
of ILP solvers.

The nanotechnology-based devices, such as resonant tun-
neling diodes (RTDs) [1], [24], memristors [8], [25], and
single-electron transistors (SETs) [11], [27], have been well
studied and might be the solutions to the TLN implemen-
tation. Since the implementation costs of TLNs correspond
to the different nanotechnology-based devices, different cost
functions in the TLN synthesis have been proposed in
the literature. For example, RTDs are suitable to imple-
ment TLGs because their current-voltage characteristics can
be exploited to represent complex functionalities as com-
pared to conventional CMOS devices. Since the area of
RTD devices determines the weights and threshold val-
ues of TLGs, the previous works [10], [16] chose as cost
function the summation of all the weights and threshold
values in the TLN, and proposed a rewiring-based algo-
rithm to minimize the cost of the given TLN. After the
wire removal and rectification network construction, the
weights and threshold values of some TLGs in the TLN
may be changed such that they cannot be canonically rep-
resented. That is, two functionally equivalent TLGs do
not have the same weights and threshold value. Therefore,
the previous work [10] proposed a simplification proce-
dure for a TLG to obtain its canonical form. On the other
hand, since the fabrication of large TLNs is quite chal-
lenging, the work [3] simply focused on minimizing the
gate count of the given TLN instead. This work exploited
the don’t cares in the TLN and merged two TLGs with
different functionalities while keeping the overall function-
ality of TLN intact. The previous works [12], [13] also
evaluated the quality of TLN by the number of TLGs
in it. The authors formulated a collapsing operation for
TLGs and proposed an analytic approach for fast circuit
transformation.

Recently, the state of the art [4] proposed a don’t-care-based
algorithm for minimizing the cost of TLGs in a given TLN.
This algorithm consisted of two parts: first, computing the

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0136-9825
https://orcid.org/0000-0002-0170-4662
https://orcid.org/0000-0002-6272-9222
https://orcid.org/0000-0002-3934-800X

LIN et al.: DON’T CARE COMPUTATION AND DE MORGAN TRANSFORMATION FOR TLN OPTIMIZATION 1413

satisfiability don’t cares (SDCs) and observability don’t cares
(ODCs) of a TLG, and second, using the computed SDCs and
ODCs to simplify the TLG without changing the structure of
TLN. Chen et al. [4] showed two sets of experimental results
of TLN minimization. One is with TLGs that have at most
six inputs, while the other is with TLGs that have at most 15
inputs. According to the experimental results in [4], the TLNs
with the 6-input fanin number constraint have much lower cost
in terms of summation of total weights and threshold values.
This is because the TLGs with more inputs lose the oppor-
tunities of TLG sharing. This phenomenon also matches the
design principle about the look-up table (LUT) size of modern
FPGA devices [7]. Therefore, the fanin number constraint of
TLGs in a TLN is suggested to be a small number when the
summation of weights and threshold values is adopted as the
cost function.

We observed that the the work of [4] can be improved
in several aspects. First, because the algorithm only focused
on the relations between two inputs of a TLG for comput-
ing don’t cares, this algorithm might miss some critical don’t
cares that can be used for TLG optimization. Second, the com-
puted don’t cares in the TLG do not always lead to a better
optimization result. In other words, the computed don’t cares
might not contribute to the optimization of TLGs inherently.
Third, the inequality constraints for the ILP solvers were con-
structed by a decision tree. However, different variable orders
will lead to different inequality constraints. Therefore, the cost
of resultant TLG might not be minimal under a given vari-
able order in [4]. Last, the implementation cost of inverters
in the TLNs was not considered in the state of the art. The
previous work [24] demonstrated that evaluating the cost of
TLNs without considering the implementation cost of inverters
is inappropriate.

Thus, in this work, we propose an efficient algorithm to
minimize the cost of TLNs consisting of TLGs with at most
six inputs while considering the number of inverters in the
TLN. Note that this fanin number constraint does not affect
the scalability of this work since any TLNs can be synthesized
with 6-input TLGs. The main contributions of this work are
threefold.

1) This article proposes an algorithm computing the useful
don’t cares that contribute to TLG optimization.

2) Instead of using the ILP-based approach in the state of
the art [4], this article adopts the TLG library map-
ping to efficiently obtain the optimal-cost TLGs in
the TLNs.

3) De Morgan’s law for threshold logic is applied
and the corresponding inverter optimization algo-
rithm is proposed to achieve a better optimization
result.

The remainder of this article is organized as follows.
Section II introduces the background of the work. Section III
presents the TLN optimization algorithm without structural
perturbation. Section IV presents the TLN optimization algo-
rithm with structural perturbation. Section V presents the
overall flow of the TLN optimization algorithm. Section VI
shows the experimental results. Finally, Section VII concludes
this work.

Fig. 1. (a) AND gate. (b) Corresponding hyperplane L : x + y = 2.

TABLE I
NUMBER OF n-INPUT NP-TLGS

II. PRELIMINARIES

A. Threshold Logic

A TLG is the primitive element in the TLN. A TLG con-
tains n binary inputs and one binary output. The parameters
of a TLG are weights wi, which correspond to inputs xi;
i = 1 ∼ n, and a threshold value T . The output f of a
TLG is evaluated by (1). If the summation of correspond-
ing weights wi of inputs xi that are assumed to be 1 in
an input vector is greater than or equal to the threshold
value T , the output f is 1. Otherwise, the output f is 0.
In the previous works [4], [10], [15], [16], the weights and
threshold values are transformed into positive integers for
facilitating the cost comparison of TLNs. The TLGs with
positive weights and threshold values have the increasing
monotonicity property, i.e., f (x1, . . . , xi−1, 1, xi+1, . . . , xn) ≥
f (x1, . . . , xi−1, 0, xi+1, . . . , xn) for all xi. In the rest of the arti-
cle, all the considered TLGs are with positive weights and
threshold values

f (x1, x2, . . . , xn) =
{

1, if
∑n

i=1 xiwi ≥ T
0, if

∑n
i=1 xiwi < T

(1)

A function that can be represented by a TLG is called a
threshold function (TF). There were some studies focusing on
the TF identification problem [9], [14], [17], [20], [21], [23].
Table I shows the number of NP-TLGs for up to eight inputs.
N and P stand for input negation and permutation, respectively.
Chen et al. [4] obtained the weights and threshold value of a
TLG by using ILP solvers. However, since we only focus on
the TLGs that have at most six inputs in this work, the optimal
weights and threshold value of 6-input TLGs can be obtained
from the 6-input TLG library by permuting the weights for
every TLG in the set of NP-TLGs in Table I. The details of
this method will be presented in Section III-C.

B. TLG and Hyperplane

A hyperplane is strongly related to a TLG, and it plays an
important role in the succeeding discussion. Therefore, in this
section, we explain the relationship between the hyperplane
and TLG first [14], [15].

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

1414 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

According to (1), we know that a TLG has the following
parameters w1, w2, . . . , wn and T . In fact, these parameters
compose a hyperplane H : x1w1 + x2w2 + · · · + xnwn = T in
an n-dimensional space. The minterms in the on-set of a TLG
will be on or above the hyperplane H. On the other hand, the
minterms in the off-set will be below the hyperplane H. For
example, the TLG <1, 1; 2> as shown in Fig. 1(a) produces
the output of 1 if and only if (x, y) = (1, 1). The behavior
of this TLG can be represented in a two-dimensional plane as
shown in Fig. 1(b). In Fig. 1(b), when any point that is on or
above the hyperplane L : x + y = 2 is applied to the TLG, the
output f is 1; otherwise, f is 0.

C. SDCs and ODCs

Node optimization is a common technique used for sim-
plifying networks [5], [6], [26]. Some input combinations to
the internal nodes of the network will not occur due to the
structure and connection of the network. These input combi-
nations are called SDCs to the nodes, and can be used for
node optimization. In addition to SDCs, ODCs are also effec-
tive to node optimization. ODCs are the input combinations
that mask the changes of internal nodes to be observable at
the primary outputs.

D. De Morgan’s Law for Threshold Logic

In the 1970s, Muroga proposed De Morgan’s law for thresh-
old logic, as shown in Fig. 2 [19]. The proof of De Morgan’s
law is as follows. According to the definition of TLG in (1), the
function of the TLG in the left of Fig. 2 can be represented as

x1w1 + x2w2 + · · · + xnwn ≥ T. (2)

Similarly, the function of the TLG in the right of Fig. 2 can
be represented as

x1w1 + x2w2 + · · · + xnwn < T ′ = w1 + w2 + · · · + wn

+ 1 − T (3)

where dots represent a complement operation. Then, (3) can
be written as

T − 1 < (1 − x1)w1 + (1 − x2)w2 + · · · + (1 − xn)wn. (4)

Since x1, x2, . . . , xn are Boolean variables, (4) is
equivalent to

x1w1 + x2w2 + · · · + xnwn > T − 1. (5)

Finally, since the weights and threshold value in a TLG are
integers, (5) can be rewritten as

x1w1 + x2w2 + · · · + xnwn ≥ T. (6)

We can see that (6) is the same as (2), which means that
the two TLGs in Fig. 2 are equivalent.

According to De Morgan’s law for threshold logic, we can
transform a TLG in a TLN into its complemented form and
vice versa without changing the TLN’s functionality.

Fig. 2. De Morgan’s law for threshold logic.

E. Review of the State of the Art

In this section, we review the previous work [4]. In that
work, the authors proposed a don’t-care-based minimization
algorithm for TLN optimization. The objective of that work
is to minimize the summation of weights and threshold val-
ues of a TLN without changing its structure. The algorithm
aimed to solve two problems: 1) how to compute the don’t
cares in the TLN and 2) how to use don’t cares to simplify a
TLG. To solve the first problem, the authors performed logic
implications backward and forward on the known assignments.
Specifically, for a multiinput TLG g and some of its fanins,
fin1 and fin2, the known assignments can be obtained by the
necessary assignments for g to be observable and an arbitrary
value v on the input fin1. Once we can obtain a value w of the
input fin2 during the logic implication process, the input pat-
terns with (fin1, fin2) = (v, w) either never occur (i.e., SDC)
or make TLG g unobservable (i.e., ODC). Thus, the input
patterns with (fin1, fin2) = (v, w) are don’t cares to g.

For the second problem, the authors modeled the TLG
optimization problem as an ILP problem. The modeling pro-
cess derived the greater-than-or-equal-to constraints as well as
the less-than constraints. These constraints were obtained by a
searching algorithm on a decision tree under a given variable
order. In that work, the authors determined the variable order
of the decision tree based on the magnitudes of weights in the
descending order. These constraints formed an ILP formula-
tion with the objective function of minimizing the summation
of weights and threshold value. The solution returned by the
ILP solver consisted of the weights and threshold value of
the TLG.

III. TLN MINIMIZATION WITHOUT STRUCTURAL

PERTURBATION

In this work, the term of structural perturbation is defined
as adding or removing inverters, without changing the connec-
tivity of other TLGs in the TLN. In this section, we focus on
the don’t care computation and TLG optimization without the
structural perturbation.

A. ONCVs and OFFCVs

Chen et al. [4] computed the SDCs and ODCs by perform-
ing logic implications on the TLN. However, this approach
might miss the critical don’t cares for TLG optimization. For
example, Fig. 3 shows a TLN to be optimized. In this graph,
the dot marked on an edge is an inverter. Let us consider the
g4 gate, which has three inputs a, b, and g3. Since for g1 gate,
a = 1 and b = 1 imply g1 = 1, then g1 = 1 implies g3 = 1 for
g3 gate, the input pattern (a, b, g3) = (1, 1, 0) to g4 will never

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: DON’T CARE COMPUTATION AND DE MORGAN TRANSFORMATION FOR TLN OPTIMIZATION 1415

Fig. 3. Example demonstrating the TLG g4 can be simplified as <1, 1, 1; 2>.

occur. In other words, the pattern (1, 1, 0) is a don’t care to
g4 gate. Thus, the TLG g4 <1, 1, 2; 3> can be simplified as
<1, 1, 1; 2>. However, the technique in [4] cannot compute
this don’t care since they only assigned one input of the TLG
during the logic implication process. In this example, both a
and b have to be assigned to 1 simultaneously to find out this
don’t care.

Furthermore, some don’t cares cannot contribute to the
optimization of TLG. That is, computing certain don’t cares
is a redundant operation without reducing the cost of TLGs.
As mentioned in Section II-B, we know that there exists a
hyperplane that separates the on-set and off-set of the TLG.
Once the on-set and off-set of TLG are changed, the corre-
sponding hyperplane will be changed accordingly. In the state
of the art, some don’t cares were computed to optimize the
TLG since a don’t care can be considered as either an on-set
minterm or an off-set minterm. However, as shown in Fig. 4(a),
the hyperplane cannot be adjusted for TLG optimization if
the computed don’t cares are not located on the boundary
of the hyperplane. When the don’t cares are located on the
boundary of the hyperplane, the hyperplane can be adjusted,
and a better hyperplane with respect to a lower cost TLG
might be obtained. Fig. 4(b) illustrates the idea of hyperplane
adjustment for TLG optimization.

In this work, we focus on computing the don’t cares that
provide the opportunities for optimization. In other words, we
only examine if the minterms on the boundary are don’t cares
or not. Once a minterm on the boundary has been confirmed as
a don’t care, the boundary will be updated for the succeeding
optimization. Before introducing the proposed approach, we
first define the ON critical vectors (ONCVs) and OFF critical
vectors (OFFCVs) of an increasing monotonic function.

Definition 1: Given an input vector v ∈ on-set (off-set) of
an increasing monotonic function, v is said to be an ONCV
(OFFCV) if and only if when any bit of v flips from 1 to 0
(0 to 1), the output of the increasing monotonic function also
flips from 1 to 0, or 1 to x (0 to 1, or 0 to x), where x denotes
a don’t care.

By the definitions of ONCVs and OFFCVs, the ONCVs
and OFFCVs are the closest minterms to the hyperplane in
an n-dimensional space because when any single bit of these
minterms flips from 1 to 0 (0 to 1), and the output also flips
from 1 to 0, or 1 to x (0 to 1, or 0 to x). Next, we prove
the existence of an ONCV and an OFFCV in an increasing
monotonic function.

Theorem 1: There exists one ONCV in a nonconstant
increasing monotonic function f .

Fig. 4. (a) Hyperplane L that cannot be adjusted. (b) Hyperplane L that can
be adjusted to another hyperplane L′.

Proof: Let �n
i denote a set of n-input vectors, where the

number of 1 in each input vector is i. For example, �4
1 contains

four input vectors 0001, 0010, 0100, and 1000.
In this proof, we call the set �n

i a zero set if and only if
each vector in this set is a don’t care or has the output of 0.
Since f is a nonconstant increasing monotonic function, we
have f (�n

n) = 1 and f (�n
0) = 0. This is because if f (�n

n) = 0,
then f is a constant 0 function; and if f (�n

0) = 1, then f
is a constant 1 function due to the increasing monotonicity
property.

Since f (�n
0) = 0, we obtain a zero set �n

0. The next step is
to find an input vector u ∈ �n

1 such that f (u) = 1. If we can
have such an input vector u, u is an ONCV by Definition 1. If
we cannot find such an input vector, the vector set �n

1 is also a
zero set. Therefore, we search the ONCVs from the vector set
�n

2. By repeating this step, if we cannot find the ONCVs until
reaching the vector set �n

n−1, we will know that �n
n contains

the only ONCV because of f (�n
n) = 1. Thus, there exists one

ONCV in a nonconstant increasing monotonic function f .
Theorem 2: There exists one OFFCV in a nonconstant

increasing monotonic function f .
Proof: Theorem 2 can be proved in a similar way as

Theorem 1. Thus, this proof is omitted.
For example, a 2-input OR function is a nonconstant

increasing monotonic function. The corresponding ONCVs are
(1, 0) and (0, 1), and its OFFCV is (0, 0).

B. Update of ONCVs and OFFCVs Considering Don’t Cares

Since we want to know whether the minterms on the bound-
ary of hyperplane, i.e., ONCVs and OFFCVs, are don’t cares
or not, we adopt the method proposed in [4] and [16] to
obtain ONCVs and OFFCVs of a TLG. This method is sum-
marized as follows. First, the weights in the TLG are sorted
in a descending order. Then, we assign an input variable to
be 1 and 0 iteratively. When the variable is assigned to be
1, we check whether the variables that have been assigned
can directly determine the output as 1 without considering
other nonassigned variables. If the answer is yes, we set the
nonassigned variables as 0 and obtain an ONCV. The pro-
cedure can be terminated immediately if the assigned values
directly determine the output as 0. Fig. 5 is an example show-
ing the process of finding ONCVs of TLG <2, 1, 1; 3>. The
OFFCVs can be derived in a similar way. When the variable

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

1416 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Fig. 5. Example showing the procedure of finding ONCVs of TLG
<2, 1, 1; 3>.

is assigned to be 0, we check whether the variables that have
been assigned can directly determine the output as 0 without
considering other nonassigned variables. If the answer is yes,
we set the nonassigned variables as 1 and obtain an OFFCV.
The procedure can be terminated immediately if the assigned
values directly determine the output as 1.

After having the ONCVs and OFFCVs, we next examine if
each vector v of them is a don’t care of a TLG g or not by
using

IMP(v ∪ OBS(g)) (7)

where OBS(g) denotes the set of value assignments that are
necessary for a TLG g to be observable at a primary out-
put, and IMP(V) denotes the set of value assignments that are
logically implied by a set of known assignments V . Once a
conflict occurs during the logic implication process, i.e., a vari-
able in the TLN is mandatorily assigned to 1 and 0 at the same
time, the input vector v is a don’t care to the TLG g. We use
Fig. 3 as an example to explain (7). First, we examine whether
v = (0, 1) is a don’t care to TLG g2. Second, the first input of
g3, which is g1, is set to be OBS(g2) = 0 for propagating g2 to
the primary output. Then, we perform logic implication with
these values, which is represented as IMP(v ∪ OBS(g2)), on
the network in Fig. 3. Since we observe that g1 is mandatorily
assigned to 1 and 0 simultaneously during the logic implica-
tion process, the input vector v = (0, 1) is a don’t care to the
TLG g2.

If a vector v in the ONCVs or OFFCVs is a don’t care to the
TLG g, v is not an ONCV or OFFCV anymore. Therefore, we
need to update the sets of ONCVs or OFFCVs such that the
boundary of hyperplane can be appropriately adjusted. Before
introducing the algorithm of ONCVs and OFFCVs update, we
define the predecessor and successor of an input vector.

Definition 2: Given an input vector v, a vector set
Predecessor(v) of v contains vectors u if and only if u turns
into v by flipping one of its input bits from 1 to 0.

Definition 3: Given an input vector v, a vector set
Successor(v) of v contains vectors u if and only if u turns
into v by flipping one of its input bits from 0 to 1.

For example, Predecessor(000) = {100, 010, 001}; and
Successor(101) = {100, 001}.

The pseudocode of the algorithm of ONCVs and OFFCVs
update is shown in Algorithm 1. In this algorithm, we sep-
arately check the boundary of on-set and off-set. At the

Algorithm 1: Pseudocode of Algorithm of ONCVs and
OFFCVs Update

1 Push all the ONCVs into cv_queue
2 while cv_queue is not empty
3 v = Pop a vector from cv_queue
4 if v is a don’t care
5 Push v into dc_queue
6 for each Predecessor(v) p
7 Assign cv_flag as true
8 for each Successor(p) s
9 if the TLG outputs 1 under the pattern s

10 Assign cv_flag as false
11 Break the for loop

12 if cv_flag is true
13 Push p into cv_queue

14 Push all the OFFCVs into cv_queue
15 while cv_queue is not empty
16 v = Pop a vector from cv_queue
17 if v is a don’t care
18 Push v into dc_queue
19 for each Successor(v) s
20 Assign cv_flag as true
21 for each Predecessor(s) p
22 if the TLG outputs 0 under the pattern p
23 Assign cv_flag as false
24 Break the for loop

25 if cv_flag is true
26 Push s into cv_queue

27 return dc_queue

beginning, the ONCVs and OFFCVs are located on the bound-
ary of on-set and off-set, respectively. However, we will update
the ONCVs and OFFCVs when a don’t care is found in the
ONCVs and OFFCVs. The algorithm is outlined as follows.
First, all the original ONCVs are pushed into a queue. Second,
we pop a vector v from the queue and examine whether it is
a don’t care or not. If v is a don’t care, we collect it and
search its predecessors. A predecessor will be added into the
queue when it satisfies the definition of ONCV in Definition
1. Similarly, we next examine if any OFFCV is a don’t care.
If an OFFCV is a don’t care, we collect it and search its
successors using the same method. At the end of algorithm,
the ONCVs and OFFCVs are updated and the collected don’t
cares are returned. Note that we only collect the don’t cares
that provide opportunities for TLG optimization. Thus, this
information about don’t cares will be used for mapping the
minimal-cost TLGs in the TLN.

According to Definition 1, the ONCVs and OFFCVs deter-
mine the hyperplane of a TLG. When some ONCVs or
OFFCVs of a TLG are don’t cares, we need to update them.
After finishing Algorithm 1, the predecessors of ONCVs
and the successors of OFFCVs cannot provide the opportu-
nity for TLG optimization. Next we prove the correctness
of this claim. Without loss of generality, given a TLG
g = <w1, . . . , wn; T>, consider one of its ONCV v =
(x1, . . . , xn), and one of Predecessor(v) = u = (y1, . . . , yn),

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: DON’T CARE COMPUTATION AND DE MORGAN TRANSFORMATION FOR TLN OPTIMIZATION 1417

where w1, . . . , wn and T are positive integers. According to
Definition 1, g outputs 1 under an ONCV. Therefore, we obtain
the following inequality:

x1w1 + · · · + xnwn >= T. (8)

According to Definition 2 about a Predecessor(v), we
know that there exists xi = 0 and u can be represented as
(x1, . . . , xi + 1, . . . , xn). Therefore, the output of g under u
can be determined by the following inequality:

y1w1 + · · · + yiwi + · · · + xnwn = x1w1 + · · · + (xi + 1)wi

+ · · · + xnwn >= T (9)

i.e., the output of g under u must be 1. Thus, u is not an
ONCV based on Definition 1. As a result, the predecessors of
ONCVs cannot provide the opportunity for TLG optimization.
The claim for the successors of OFFCVs can be proved in a
similar way. Thus, we omit it in the proof.

For the complexity analysis, given a TLN consisting of n
TLGs and the TLGs are with at most k inputs. The com-
plexity for finding ONCVs and OFFCVs of a TLG is O(2k).
Algorithm 1 first checks whether a critical vector is a don’t
care by performing logic implication in the TLN. Hence, the
complexity becomes O(2kn). If the critical vector is a don’t
care, the algorithm searches the corresponding successors and
predecessors. The maximum numbers of successors and pre-
decessors are both k. Thus, the complexity of optimizing a
TLG is O(2knk2). The complexity of optimizing a TLN is
O(2kn2k2). It seems that this complexity is high based on our
analysis. However, the algorithm is practically efficient from
the implementation viewpoint since this work only focuses on
the TLGs with at most six inputs.

We use the TLG g2 in Fig. 3 as an example to demonstrate
Algorithm 1. g2 has two ONCVs, (0, 1) and (1, 0), and one
OFFCV, (0, 0). First, we examine whether the ONCV (0, 1)
is a don’t care to g2 by (7). Since (0, 1) is a don’t care to
g2, we search its predecessor, which is (1, 1). Since no suc-
cessor of (1, 1) outputs 1 for TLG g2, the vector (1, 1) will
be pushed into cv_queue for don’t care checking. Next, this
algorithm iteratively examines the other vectors in cv_queue
for don’t care checking. Finally, the algorithm returns the
dc_queue, which contains two vectors (0, 1) and (0, 0) for
further optimization on g2.

C. Mapping Algorithm Using the TLG Library

Now, we have the truth table of a TLG with don’t cares.
We are next to find an optimal TLG, in terms of summation of
weights and threshold values, which is functionally compati-
ble with the incompletely specified truth table. Although the
number of NP-TLGs in Table I is only 994 for 6-input TLGs,
we need to consider the permutation of weights in a TLG.
For example, two TLGs <1, 2, 1; 3> and <1, 1, 2; 3> can be
obtained by permuting the weights from the TLG <2, 1, 1; 3>.
In this work, the TLGs with different weight permutations
form an isomorphic group (IG). The TLGs in the same IG
share two common properties. First, they have the same sum-
mation of weights and threshold value. Second, their sizes of

Fig. 6. Searching process for a 6-input compatible TLG. 6-input TLGs have
994 isomorphic groups in total.

on-sets and off-sets are the same. These two properties accel-
erate the TLG mapping process by pruning a wide range of
TLG searching space.

Fig. 6 shows how we search the compatible TLG from the
TLG library. We first sort the IGs based on the summation of
weights and threshold value in the ascending order. Then, we
iteratively examine the TLGs. Once we have found a com-
patible TLG, the algorithm will be terminated immediately
because this TLG has the smallest cost. Since the TLGs in
this work have at most six inputs, the truth table of a TLG
can be stored in a 26 = 64-bit data type. In other words,
we can compare the target function and the function of TLGs
in the TLG library by using a bitwise-XOR operation, i.e.,
we XOR the target function and the function of TLG in the
library. Once the XORed result returns 1 in the non-don’t-care
bit position of the target function, the TLG is noncompatible
with the target function; otherwise, it is a compatible TLG and
has the minimal cost.

Note that we have mentioned that the TLGs in the same IG
have the same size of on-sets and off-sets. Given the target
function with m1 minterms in the on-set and m2 minterms in
the off-set, the searching process can directly jump to the next
IG if the size of on-set (m3) of the IG is smaller than m1 or
the size of off-set (m4) of the IG is smaller than m2. This
is because a TLG in an IG with m3 on-set minterms and m4
off-set minterms cannot be compatible to the target function,
where m3 < m1 or m4 < m2.

IV. TLN MINIMIZATION WITH STRUCTURAL

PERTURBATION

In Section III, we have proposed the don’t care compu-
tation and the corresponding TLG optimization algorithm.
Although this approach guarantees the minimal-cost TLGs
after optimization, we found that [4] resulted in a lower cost
for the whole TLN for few benchmarks. This is because
optimizing a certain TLG might change the SDCs or ODCs
of the other TLGs and affect results. In summary, since
we do not change the structure of TLN, the approach in
Section III is only capable of generating the minimal-cost

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

1418 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

TLGs locally instead of having the minimal-cost TLNs glob-
ally. Therefore, in this section, we propose our approach com-
bining De Morgan’s law, which allows structural perturbation,
for achieving the global TLN optimization.

A. TLN Optimization With De Morgan’s Law

According to De Morgan’s law of threshold logic, we can
consider to replace a TLG with its complemented form in
the TLN when the cost is reduced. In fact, since the weights
in a TLG and its complemented form are not changed after
applying De Morgan’s law, we can only compare the threshold
values T and T ′, as shown in Fig. 2. Once a TLG is replaced,
the corresponding inverters will be added to the TLN. Note
that the total number of inverters in a TLN does not always
increase after the replacement. This is because inverter pairs
will be removed after the replacement. After examining all the
TLGs in the TLN and applying necessary replacements, an
optimal-cost TLN is obtained. Although the overall TLN cost
might be further reduced after performing other optimizations,
e.g., structural rewriting [18], this work only focuses on a
lightweight replacement without involving dramatic structural
change.

B. Inverter Optimization

In Section I, we use RTDs as an example to explain
that the implementation cost of inverters cannot be ignored.
However, the implementation cost difference between invert-
ers and the summation of weights and threshold values cannot
be evaluated when the device for TLN implementation is not
determined yet. Therefore, instead of using a single factor,
we evaluate a TLN by considering the number of inverters
and summation of weights and threshold values at the same
time. That is, we set a balance parameter about the number of
inverters and the summation of weights and threshold values
to evaluate the quality of the synthesized TLN based on the
selected hardware devices.

In the inverter optimization stage, our objective is to reduce
the number of inverters in the TLN. We observed that some
TLGs, for example, TLG <1, 1, 1; 2>, have the same weights
and threshold values as the corresponding complemented
forms. Therefore, we can apply De Morgan’s law on these
TLGs to reduce the number of inverters between two con-
nected TLGs without increasing the cost of TLN In addition
to these TLGs, we can also apply De Morgan’s law on the
other TLGs that have different representations as their comple-
mented forms. In this work, we propose a balance parameter
as listed in (10) to determine the TLG that has to be trans-
formed by De Morgan’s law again for reducing the number of
inverters in the TLN

|Reduced Inverter|
Increased Cost

> User-specified Threshold (10)

where |Reduced Inverter| is the number of reduced inverters
and Increased Cost is the increased cost when a TLG is trans-
formed to its complemented form. The meaning of (10) is to
evaluate the number of inverters that can be reduced per unit
cost increment. According to (10), we can obtain a TLN that
considers the cost and the number of inverters simultaneously.

Fig. 7. Example of applying De Morgan’s law on TLG <2, 1, 1; 2>.

TABLE II
CPU TIME COMPARISON BETWEEN THE PROPOSED

ALGORITHM AND THE BRUTE-FORCE APPROACH

For example, Fig. 7 shows a TLG <2, 1, 1; 2> and the cor-
responding TLG <2, 1, 1; 3> obtained by De Morgan’s law.
In this example, | Reduced Inverter | is 2 and Increased Cost
is 1. Therefore, the TLG will be replaced by its complemented
form when (|Reduced Inverter|/Increased Cost) is greater than
a user-specified threshold, say 1.5.

V. OVERALL FLOW

The proposed approach to TLN optimization is shown in
Fig. 8. The input is a TLN to be optimized. First, we itera-
tively select a TLG and compute its ONCVs and OFFCVs.
Second, we examine whether the ONCVs and OFFCVs are
don’t cares. Once an ONCV or OFFCV has been confirmed as
a don’t care, we update the ONCVs or OFFCVs by examining
the corresponding predecessors and successors, respectively,
for further optimization. Once all the ONCVs and OFFCVs
are not SDCs or ODCs, we search a minimal-cost compat-
ible TLG by bitwise-XOR operations from the TLG library
for replacement. When all the TLGs in the TLN have been

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: DON’T CARE COMPUTATION AND DE MORGAN TRANSFORMATION FOR TLN OPTIMIZATION 1419

Fig. 8. Overall flow of the proposed approach to TLN optimization.

processed, a cost-optimized TLN without structural perturba-
tion is obtained. To achieve a better optimization result, the
TLGs in the TLN are considered to be transformed by De
Morgan’s law. When all the TLGs in the TLN have been
examined, a cost-optimized TLN with structural perturbation
is obtained. Finally, the number of inverters in the TLN can
be further reduced with cost overhead when we apply De
Morgan’s law again on the TLGs that satisfy (8). In the end,
a cost-optimized TLN considering the number of inverters is
obtained.

VI. EXPERIMENTAL RESULTS

We implemented our approach in C language. The experi-
ments were conducted on a 2.6-GHz Linux platform (CentOS
6.10) with 64-GBytes memory. To have a fair comparison
on performance, the experiments for [4] were conducted
again on our machine. The source codes were provided by
Chen et al. [4]. The benchmarks used in the experiments are
IWLS 2005 and were provided by [4], which are available
online [30]. In this work, we focus on minimizing the cost
of TLNs consisting of TLGs with at most six inputs. The
TLG library in this experiment is generated by permuting the
weights of all 2 to 6-input NP-TLGs [9], [17], [20], [23].
We have verified the optimized TLNs by the combinational
equivalence checker cec in the ABC package [29]. All the
optimization results are correct.

To show the efficiency of the proposed algorithm, we
implemented a brute-force checking approach for comparison.

That is, the brute-force process checks (7) on all the 2n

vectors to detect don’t cares for an n-input TLG. Table II
shows the comparison results. Column 1 lists the benchmarks.
Columns 2 and 3 show the required CPU time of the proposed
algorithm and the brute-force approach, respectively. The last
column shows the speedup of our algorithm as compared
to the brute-force approach. According to the experimental
results, the average speedup of our algorithm is 2.78. In sum-
mary, the proposed algorithm is more efficient because it
only computes the useful don’t cares that contribute to TLG
optimization.

Next, we summarize the comparison of experimental results
among the previous works [4], [22], and the proposed approach
w/wo structural perturbation in Table III. In Table III, Column
1 lists the benchmarks. Columns 2 and 3 show the cost
in terms of summation of weights and threshold values in
the TLN, and the number of inverters in the TLN by the
previous work [22]. Columns 4–7 show the cost, the cor-
responding cost reduction compared with [22], the number
of inverters, and the required CPU time measured in sec-
ond by [4]. Columns 8–11 show the corresponding results of
our approach without structural perturbation. Columns 12–15
show the corresponding results of our approach with structural
perturbation.

According to Table III, [4] achieved an average of 10.73%
cost reduction, and the required CPU time is 15.48 s
on average. Our approach without structural perturbation
achieved 12.22% cost reduction and only spent 3.34 s on

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

1420 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

TABLE III
COMPARISON OF TLN REDUCTION AND CPU TIME AMONG [22], THE STATE OF THE ART [4], AND THE PROPOSED ALGORITHM

these benchmarks on average. The proposed approach with
structural perturbation achieved 25.87% cost reduction, or
15.14% more as compared with the state of the art, and
only spent 4.03 s on the same set of benchmarks on aver-
age. Since we did not perform the inverter optimization in
the experiment without structural perturbation, the number
of inverters is almost the same by our approach and the
previous works [4], [22]. The slight difference on the num-
ber of inverters is caused by removing some constant nodes
after optimization.

The average number of inverters by our approach with
structural perturbation is approximately 260, higher than that
without structural perturbation. However, the number of invert-
ers with structural perturbation does not always increase. For
example, considering the benchmark pci_bridge32, ours with
structural perturbation obtained 16 303 inverters while that
without structural perturbation obtained 17 735 inverters. In
summary, the proposed approach with structural perturbation
is very efficient and results in much more cost reduction.

Besides, we also show the experimental results with
the inverter optimization under different user-specified
threshold parameters in Table IV. Column 1 lists the
benchmarks. Columns 2 and 3 show the cost reduc-
tion and the number of inverters without applying the
inverter optimization. Columns 4–13 show the correspond-
ing results with applying the inverter optimization under

user-specified thresholds of 2.0, 1.6, 1.2, 0.8, and 0.4,
respectively.

According to (10), the higher user-specified threshold is the
more TLGs cannot be replaced for inverter optimization. As
a result, the optimized TLN with a high user-specified thresh-
old usually contains more inverters. For example, the average
number of inverters is 3256.50 when the user-specified thresh-
old is 2.0, but the average number of inverters is 2121.63 when
the user-specified threshold is 0.4.

Since the implementation cost of an inverter depends on
the selected hardware device, the user-specified threshold pro-
vides the flexibility for the inverter optimization algorithm.
That is, we can assign the user-specified threshold as a large
number when the implementation cost of inverters is relatively
low. Otherwise, we can assign the user-specified threshold as
a small number to achieve a lower implementation cost.

To show the advantage of the proposed overall approach
with structural perturbation and inverter optimization over [4],
we take the results from Table IV under the column
of Threshold = 2.0 for comparison. Our result achieved
13.73% (24.46%–10.73%) more cost reduction and 1018.93
(4275.43–3256.5) more inverter reduction on average as
compared to the state of the art. The required CPU time
for the results of Threshold = 2.0 is 4.44 s on average.
Therefore, our approach is 3.49 times faster than the state of
the art.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: DON’T CARE COMPUTATION AND DE MORGAN TRANSFORMATION FOR TLN OPTIMIZATION 1421

TABLE IV
TLN REDUCTION AND THE NUMBER OF INVERTERS UNDER DIFFERENT INVERTER OPTIMIZATION THRESHOLDS

VII. CONCLUSION

In this work, we proposed an optimization algorithm for
TLNs. The algorithm searches ONCVs and OFFCVs of a TLG
and exploited the obtained don’t cares to map the optimal TLG
from the TLG library. Then, De Morgan’s law is applied to
the TLGs such that the global-optimal TLN considering the
cost and the number of inverters can be achieved. The exper-
imental results show that the proposed approach is capable of
obtaining a smaller cost and fewer inverters in a TLN for a
set of benchmarks in a more efficient way.

REFERENCES

[1] T. Akeyoshi, K. Maezawa, and T. Mizutani, “Weighted sum threshold
logic operation of MOBILE using resonant-tunneling transistors,” IEEE
Electron Device Lett., vol. 14, no. 10, pp. 475–477, Oct. 1993.

[2] V. Beiu, J. M. Quintana, and M. J. Avedillo, “VLSI implementations of
threshold Logic—A comprehensive survey,” IEEE Trans. Neural Netw.,
vol. 14, no. 5, pp. 1217–1243, Sep. 2003.

[3] Y.-C. Chen, L.-C. Zheng, and F.-L. Wong, “Optimization of threshold
logic networks with node merging and wire relacement,” ACM Trans.
Design Autom. Electron. Syst., vol. 24, no. 6, p. 67, 2019.

[4] Y.-C. Chen, H.-J. Chang, and L.-C. Zheng, “Don’t-care-based node
minimization for threshold logic networks,” in Proc. DAC, 2020, pp. 1–6.

[5] M. Damiani and G. De Micheli, “Observability don’t care sets and
Boolean relations,”İ in ICCAD Tech. Paper, 1990, pp. 502–505.

[6] M. Damiani and G. De Micheli, “Don’t care set specifications in com-
binational and synchronous logic circuits,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 12, no. 3, pp. 365–388, Mar. 1993.

[7] H. Gao, Y. Yang, X. Ma, and G. Dong, “Analysis of the effect of LUT
size on FPGA area and delay using theoretical derivations,” in Proc. Int.
Symp. Qual. Electron. Design, 2005, pp. 370–374.

[8] L. Gao, F. Alibart, and D. B. Strukov, “Programmable CMOS/memristor
threshold logic,” IEEE Trans. Nanotechnol., vol. 12, no. 2, pp. 115–119,
Mar. 2013.

[9] T. Gowda, S. Vrudhula, and G. Konjevod, “A non-ILP based threshold
logic synthesis methodology,” in Proc. IWLS, 2007, pp. 222–229.

[10] P.-Y. Kuo, C.-Y. Wang, and C.-Y. Huang, “On rewiring and simplifica-
tion for canonicity in threshold logic circuits,” in Proc. ICCAD, 2011,
pp. 396–403.

[11] C. R. Lageweg, S. D. Cotofana, and S. Vassiliadis, “A linear thresh-
old gate implementation in single electron technology,” in Proc. IEEE
Comput. Soc. VLSI Workshop, 2001, pp. 93–98.

[12] N.-Z. Lee and J.-H. R. Jiang, “Constraint solving for synthesis and veri-
fication of threshold logic circuits,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 40, no. 5, pp. 904–917, May 2021.

[13] N.-Z. Lee, H.-Y. Kuo, Y.-H. Lai, and J.-H. R. Jiang, “Analytic
approaches to the collapse operation and equivalence verification of
threshold logic circuits,” in Proc. ICCAD, 2016, pp. 30–37.

[14] C.-C. Lin, C.-H. Liu, Y.-C. Chen, and C.-Y. Wang, “A new necessary
condition for threshold function identification,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 39, no. 12, pp. 5304–5308,
Dec. 2020.

[15] C.-C. Lin, C.-W. Huang, C.-Y. Wang, and Y.-C. Chen, “In&Out:
Restructuring for threshold logic network optimization,” in Proc. Int.
Symp. Qual. Electron. Design, 2017, pp. 413–418.

[16] C.-C. Lin, C.-Y. Wang, Y.-C. Chen, and C.-Y. Huang, “Rewiring for
threshold logic circuit minimization,” in Proc. DATE, 2014, pp. 1–6.

[17] C.-H. Liu, C.-C. Lin, Y.-C. Chen, C.-C. Wu, C.-Y. Wang, and S.
Yamashita, “Threshold function identification by redundancy removal
and comprehensive weight assignments,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 38, no. 12, pp. 2284–2297, Dec. 2019.

[18] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis,” in Proc. DAC,
2006, pp. 532–535.

[19] S. Muroga, Threshold Logic and Its Applications. New York, NY, USA:
Wiley, 1971.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

1422 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

[20] A. Neutzling, M. G. A. Martins, V. Callegaro, A. I. Reis, and R. P. Ribas,
“A simple and effective heuristic method for threshold logic identifica-
tion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 5, pp. 1023–1036, May 2018.

[21] A. Neutzling, M. G. A. Martins, R. P. Ribas, and A. I. Reis, “Synthesis of
threshold logic gates to nanoelectronics,” in Proc. Symp. Integr. Circuits
Syst. Design, 2013, pp. 1–6.

[22] A. Neutzling, J. M. A. Matos, A. Mishchenko, A. I. Reis, and
R. P. Ribas, “Effective logic synthesis for threshold logic circuit design,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 5,
pp. 926–937, May 2019.

[23] A. K. Palaniswamy and S. Tragoudas, “An efficient heuristic to iden-
tify threshold logic functions,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 8, no. 3, pp. 1–17, 2012.

[24] H. Pettenghi, M. J. Avedillo, and J. M. Quintana, “Improved
nanopipelined RTD adder using generalized threshold gates,” IEEE
Trans. Nanotechnol., vol. 10, no. 1, pp. 155–162, Jan. 2011.

[25] J. Rajendran, H. Manem, R. Karri, and G S. Rose, “Memristor based pro-
grammable threshold logic array,” in Proc. Nanoarch, 2010, pp. 5–10.

[26] H. Savoj and R. K. Brayton, “The use of observability and external don’t
cares for the simplification of multi-level networks,” in Proc. DAC, 1990,
pp. 297–301.

[27] M. H. Sulieman, and V. Beiu, “Characterization of a 16-bit threshold
logic single electron technology adder,” in Proc. ISCAS, pp. 681–684,
2004.

[28] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, “Threshold network
synthesis and optimization and its application to nanotechnologies,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 1,
pp. 107–118, Jan. 2005.

[29] Berkeley Logic Synthesis and Verification Group. (2007). ABC: A
System for Sequential Synthesis and Verification, Release 70930.
[Online]. Available: http://www.eecs.berkeley.edu/∼alanmi/abc/

[30] Y.-C. Chen, H.-J. Chang, and L.-C. Zheng. (2019). Benchmark
Circuits Used in the Work Entitled ‘Don’t-Care-Based Node
Minimization for Threshold Logic Networks’. [Online]. Available:
http://doi.org/10.5281/zenodo.3525945

Chia-Chun Lin received the B.S., M.S., and Ph.D.
degrees from the Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan, in
2011, 2013, and 2021, respectively.

His current research interests include logic syn-
thesis, optimization, verification for VLSI designs,
and automation for emerging technologies.

Ciao-Syun Lin received the B.S. degree from the
Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan, in 2020, where
she is currently pursuing the M.S. degree.

Her current research interests include logic syn-
thesis, optimization, verification for VLSI designs,
and automation for emerging technologies.

You-Hsuen Tsai received the B.S. degree from the
Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan, in 2020, where
he is currently pursuing the M.S. degree.

His current research interests include logic syn-
thesis, optimization, verification for VLSI designs,
and automation for emerging technologies.

Yung-Chih Chen (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees from the
Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan, in 2003, 2005,
and 2011, respectively.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
Yuan Ze University, Taoyuan, Taiwan. His current
research interests include logic synthesis, design
verification, and design automation for emerging
technologies.

Chun-Yao Wang (Member, IEEE) received the
Ph.D. degree from the Department of Electronics
Engineering, National Chiao Tung University,
Hsinchu, Taiwan, in 2002.

Since 2003, he has been an Assistant Professor
with the Department of Computer Science, National
Tsing Hua University, Hsinchu, where he is cur-
rently a Distinguished Professor. He has published
over 80 technical papers in these areas and is a
named inventor in nine patents. His current research
interests include logic synthesis, optimization, and

verification for very large-scale integrated/system-on-chip designs and emerg-
ing technologies.

Dr. Wang was the recipient of the Best Paper Award in 2018 IEEE
International Symposium on VLSI Design, Automation and Test. Two of
his research results were nominated as Best Papers in the 2009 IEEE Asia
and South Pacific Design Automation Conference and the 2010 IEEE/ACM
Design Automation Conference, respectively. In 2020, he was awarded the
Distinguished Electrical Engineering Professor Award from the Chinese
Institute of Electrical Engineering, Taiwan.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2022 at 05:33:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

